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Abstract
We consider the self-dual Yang–Mills equation and its
reduction, the Manakov–Zakharov system. We discuss
three- and four-dimensional generalizations of the chi-
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1 INTRODUCTION

Two-dimensional integrable relativistic-invariant systems are classical objects of the theory of
integrable systems (see Refs. 1–3). The first (2 + 1) integrable system was proposed by Manakov
and Zakharov in Ref. [6] as a reduction of the self-dual Yang–Mills (sdYM) equations (see Refs.
4, 5). The inverse spectral transform (IST) was first applied to the sdYM equations in Ref. [7] to
construct local solutions. General solutions of theManakov–Zakharov system, as well as localized
soliton solutions, were constructed in Ref. [6].
The authors of Ref. [6] were certain that the Manakov–Zakharov system is relativistically

invariant, but the system was only “semiinvariant,” or relativistically invariant in the linear
approximation. This fact was discovered by R.S. Ward8 in 1988 who proposed another (2 + 1) gen-
eralization of the chiral field equation. During the next 10 years, several other articles on this
subject were published,9–13 and then interest in this topic faded.
In this paper, we consider various reductions of the sdYM equations, discuss three- and four-

dimensional generalizations of the chiral field equations, and explain methods for constructing
their exact solutions.
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2 THE GENERALMANAKOV–ZAKHAROV SYSTEM

Let𝑍1,𝑍2,𝑍3,𝑍4 be complex variables and let𝑌(𝑍1, … , 𝑍4) be an𝑁 ×𝑁 complex-valued invertible
matrix. We consider the system

𝜕

𝜕𝑍1

(
𝜕

𝜕𝑍4
𝑌 ⋅ 𝑌−1

)
−

𝜕

𝜕𝑍3

(
𝜕

𝜕𝑍2
𝑌 ⋅ 𝑌−1

)
= 0. (1)

The sdYM for the gauge group SU(𝑁) may be obtained from this system by the reduction �̄�1 =
𝑍4 = 𝑧 and �̄�3 = −𝑍2 = 𝑦 (see Ref. 6).
The system (1) admits the following Lax representation:

(
𝜆
𝜕

𝜕𝑍1
+

𝜕

𝜕𝑍2

)
Ψ + 𝐴Ψ = 0,

(
𝜆
𝜕

𝜕𝑍3
+

𝜕

𝜕𝑍4

)
Ψ + 𝐵Ψ = 0. (2)

Here, 𝜆 ∈ ℂ is a spectral parameter. Indeed, assume that Ψ has the asymptotic expansion

Ψ → 𝐼 +
𝑃

𝜆
+⋯ at 𝜆 → ∞

at infinity. Setting 𝜆 = 0, we obtain

𝐴 = −
𝜕𝑌

𝜕𝑍2
𝑌−1, 𝐵 = −

𝜕𝑌

𝜕𝑍4
𝑌−1, (3)

where 𝑌 = Ψ|𝜆=0. On the other hand, setting 𝜆 → ∞, we find

𝐴 = −
𝜕𝑃

𝜕𝑍1
, 𝐵 = −

𝜕𝑃

𝜕𝑍3
,

𝜕𝐴

𝜕𝑍3
=
𝜕𝐵

𝜕𝑍1
. (4)

By combining (3) and (4), we obtain the system (1). Notice that in the special case when 𝑍3 = −𝑍4,
𝑍2 = 𝑍1, the system (1) takes the symmetric form

𝜕

𝜕𝑍1

(
𝜕

𝜕𝑍3
𝑌 ⋅ 𝑌−1

)
+

𝜕

𝜕𝑍3

(
𝜕

𝜕𝑍1
𝑌 ⋅ 𝑌−1

)
= 0. (5)

Then, the Lax pair (2) takes the form

𝜕Ψ

𝜕𝑍1
+

𝐴

𝜆 + 1
Ψ = 0,

𝜕Ψ

𝜕𝑍3
+

𝐵

𝜆 − 1
Ψ = 0. (6)

If 𝑍1, 𝑍3 are real, Equation (5) is relativistically invariant. In general, it is a complexification of the
integrable equation for the chiral field studied in Refs. [1–3, 6].
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3 of 14 ZAKHAROV

The symmetric equation is a Lagrangian system with Lagrangian

𝐿 = tr

(
𝜕𝑌

𝜕𝑍1
𝑌−1

𝜕𝑌

𝜕𝑍3
𝑌−1

)
. (7)

We callΨ andΨ−1 thewave function and the inverse wave function. The simplest example of wave
functions is

Ψ = 𝐼 +
𝜆0 − 𝜇0
𝜆 − 𝜆0

𝑃, Ψ−1 = 𝐼 −
𝜆0 − 𝜇0
𝜆 − 𝜇0

𝑃, (8)

where𝑃 = 𝑃2 is a projection operator, and 𝜆0 ≠ 𝜇0 are complex numbers. This casewas considered
in Ref. [15] in 1979. We consider only the simplest case when the rank of 𝑃 is 1. In this case, 𝑃 is a
bivector

𝑃 =
|𝑝⟩ ⟨𝑞|⟨𝑞|𝑝⟩ . (9)

The system (2) can be rewritten as follows:

𝐴 = −

(
𝜆
𝜕

𝜕𝑍1
+

𝜕

𝜕𝑍2

)
Ψ ⋅ Ψ−1,

𝐵 = −

(
𝜆
𝜕

𝜕𝑍3
+

𝜕

𝜕𝑍4

)
Ψ ⋅ Ψ−1. (10)

According to (8) and (10), 𝐴 and 𝐵 are rational functions with simple poles at 𝜆 = 𝜆0, 𝜆 = 𝜇0. We
require the residues at those poles to be zero and rewrite the system (10) as follows:

𝐴, 𝐵 =
𝜆0 − 𝜇0
𝜆 − 𝜆0

𝐷𝜆 𝑃

(
𝐼 −

𝜆0 − 𝜇0
𝜆 − 𝜇0

𝑃

)
. (11)

Here, the symbol 𝐷𝜆 represents two operators (corresponding to 𝐴 and 𝐵):

𝐷𝜆 = 𝜆
𝜕

𝜕𝑍1
+

𝜕

𝜕𝑍2
, 𝜆

𝜕

𝜕𝑍3
+

𝜕

𝜕𝑍4
, 𝐷𝜆 𝑃 = 𝐷𝜆 |𝑝⟩ ⟨𝑞| + |𝑝⟩𝐷𝜆 ⟨𝑞|.

Now let 𝜆 tend to 𝜆0, then

𝐼 −
𝜆0 − 𝜇0
𝜆 − 𝜇0

𝑃 → 𝐼 − 𝑃 = �̂�, (12)

where �̂� is also a projection operator: �̂�2 = �̂�. Moreover,

𝑃�̂� = �̂�𝑃 = 0. (13)
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ZAKHAROV 4 of 14

By virtue of (13), we obtain ⟨𝑞|�̂�| = 0. We henceforth assume that Ψ is a 2 × 2matrix. This means
that �̂� is also a bivector, like 𝑃. Thus,

�̂� =
|𝑓⟩ ⟨𝑔|⟨𝑔|𝑓⟩ . (14)

By virtue of (13), ⟨𝑔|𝑝⟩ = 0 and ⟨𝑞|𝑓⟩ = 0.
Formally speaking, potentials 𝐴, 𝐵 are rational functions with two poles at 𝜆 = 𝜆0 and 𝜆 = 𝜇0.

In fact, they do not depend on 𝜆, so the residues at both poles must be zero. Canceling of the
residue at 𝜆 = 𝜆0 leads to the equation

[𝐷𝜆0 𝑃](1 − 𝑃) = 0. (15)

Canceling of the residue at 𝜆 = 𝜇0 gives

[−𝐷𝜇0 𝑃] ⋅ 𝑃 = [𝐷𝜇0 (1 − 𝑃)] ⋅ 𝑃 = 0. (16)

Here,

𝐷𝜆0 =

⎧⎪⎨⎪⎩
𝜆0

𝜕

𝜕𝑍1
+

𝜕

𝜕𝑍2

𝜆0
𝜕

𝜕𝑍3
+

𝜕

𝜕𝑍4

, 𝐷𝜇0 =

⎧⎪⎨⎪⎩
𝜇0

𝜕

𝜕𝑍1
+

𝜕

𝜕𝑍2

𝜇0
𝜕

𝜕𝑍3
+

𝜕

𝜕𝑍4
.

(17)

Plugging (9) into (15) and (16), one finds

|𝐷𝜇0𝑓⟩ = 0, ⟨𝐷𝜆0𝑞| = 0. (18)

These equations can be resolved as follows. Let

Ψ0 = 𝑇(𝑍1 − 𝜆𝑍2, 𝑍3 − 𝜆𝑍4) (19)

be a general solution to the system

(
𝜆
𝜕

𝜕𝑍1
+

𝜕

𝜕𝑍2

)
Ψ0 = 0,

(
𝜆
𝜕

𝜕𝑍3
+

𝜕

𝜕𝑍4

)
Ψ0 = 0. (20)

Let

𝐹 = 𝑇(𝑍1 − 𝜆0𝑍2, 𝑍3 − 𝜆0𝑍4), 𝐺 = 𝑇−1(𝑍1 − 𝜇0𝑍2, 𝑍3 − 𝜇0𝑍4). (21)

Then, Equation (18) can be resolved as follows:

|𝑓⟩ = 𝐺 |𝑓0⟩, ⟨𝑞| = ⟨𝑞0|𝐹. (22)
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5 of 14 ZAKHAROV

Here, |𝑓0⟩ and ⟨𝑞0| are a constant vector and covector, respectively. If the vector |𝑓⟩ and the cov-
ector ⟨𝑞| are known, then the reconstruction of |𝑔⟩ and ⟨𝑝| is a purely algebraic problem which
we will discuss later. As long as 𝑃 is known, the solution 𝑌 is

𝑌 = 1 −
𝜆0 − 𝜇0
𝜇0

𝑃, 𝑌−1 = 1 +
𝜆0 − 𝜇0
𝜇0

𝑃. (23)

The trick that we have used for the construction of the exact solution of the nonlinear system
(1) is the simplest example of the powerful “dressing method,” which was invented in 1974.14 The
above is an example of a dressing on the trivial background. To construct a more general class
of solutions, we start with an arbitrarily chosen solution of the Lax system (2), which we denote
Ψ(𝜆, 𝑍1, 𝑍2, 𝑍3, 𝑍4). Then, as before

𝑌 = Ψ(0, 𝑍1, 𝑍2, 𝑍3, 𝑍4). (24)

Now we denote

𝐹 = Ψ(𝜆, 𝑍1, 𝑍2, 𝑍3, 𝑍4), 𝐺 = Ψ−1(𝜇, 𝑍1, 𝑍2, 𝑍3, 𝑍4). (25)

We seek a new solution Ψ̂ of the system (2) as follows:

Ψ̂ =

(
1 +

𝜆0 − 𝜇0
𝜆 − 𝜆0

�̂�

)
Ψ, Ψ̂−1 = Ψ

(
1 −

𝜆0 − 𝜇0
𝜆 − 𝜇0

�̂�

)
. (26)

In (26), 𝜆0 and 𝜇0 are arbitrary complex numbers, and 𝑃 = 𝑃2, �̂� = 1 − 𝑃 are complimentary
projectors. In the case 𝑁 = 2, they are bivectors

�̂� =
|�̂�⟩ ⟨�̂�|⟨�̂�|�̂�⟩ , 1 − �̂� =

|𝑓⟩ ⟨�̂�|⟨𝑓|�̂�⟩ . (27)

The new vector |𝑓⟩ and covector ⟨�̂�| are given by expressions
|𝑓⟩ = 𝐺|𝑓0⟩, ⟨�̂�| = ⟨�̂�0|𝐹, (28)

where 𝐹 and 𝐺 are given by expressions (25).
The new solution of the system (1) is given by expressions

�̂� =

(
1 −

𝜆0 − 𝜇0
𝜆0

�̂�

)
𝑌, �̂�−1 = 𝑌−1

(
1 +

𝜆0 − 𝜇0
𝜇0

)
𝑃. (29)

The constructed solution is called a one-soliton solution, but this is not an exact term. We call
it a “one-pole solution” instead. The construction of the one-pole solution can be generalized to
produce the much more general “𝑛-pole solution.”
We again use the dressing method. Suppose we know one solution of (2) with wave function

Ψ(𝜆, 𝑍1 …𝑍4). We seek the dressed 𝑛-pole solution in the form

Ψ̃ = 𝜒(𝜆)Ψ(𝜆),
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ZAKHAROV 6 of 14

where 𝜒(𝜆) is a rational function with simple poles. One can seek 𝜒(𝜆) in the following form:

𝜒 = 𝐼 +

𝑛∑
𝑘=1

𝑅𝑘
𝜆 − 𝜆𝑘

. (30)

The inverse function is also rational:

𝜒−1 = 𝐼 +

𝑛∑
𝑘=1

𝑆𝑘
𝜆 − 𝜇𝑘

. (31)

Here, 𝜆𝑘 and 𝜇𝑘 are certain complex numbers.
We consider only the case when 𝑅𝑘 and 𝑆𝑘 have rank 1. In this case, they can be presented as

tensor products

𝑅𝑘 = |𝑝𝑘⟩ ⟨𝑞𝑘|, 𝑆𝑘 = |𝑓𝑘⟩ ⟨𝑔𝑘|. (32)

The vectors |𝑓𝑘⟩ and the covectors ⟨𝑞𝑘| can be found by the use of the dressing function Ψ0,
obeying the following equations

|𝑓𝑘⟩ = 𝐺𝑘|𝑓0𝑘⟩, ⟨𝑞𝑘| = ⟨𝑞0𝑘|𝐹𝑘, 𝐹𝑘 = Ψ
−1
0
(𝜆𝑘), 𝐺𝑘 = Ψ0(𝜇𝑘). (33)

Here, |𝑓0𝑘⟩ and ⟨𝑞0𝑘| are arbitrary constant vectors and covectors. The remaining components
of (32), namely, the vectors |𝑝𝑘⟩ and covectors ⟨𝑔𝑘|, can be found by solving the following systems
of linear algebraic equations:

|𝑓𝑙⟩ + 𝑛∑
𝑘=1

|𝑝𝑘⟩ ⟨𝑞𝑘|𝑓𝑙⟩
𝜇𝑙 − 𝜆𝑘

= 0,

|𝑞𝑙⟩ + 𝑛∑
𝑘=1

|𝑔𝑘⟩ ⟨𝑓𝑘|𝑞𝑙⟩
𝜆𝑙 − 𝜇𝑘

= 0. (34)

If all 𝜆𝑙 and𝜇𝑘 are distinct, then the denominators in (34) are nonzero and this systemhas a unique
solution. Special cases when some 𝜆𝑘 and 𝜇𝑘 coincide can be studied by taking a limit from the
general case.
We note that expressions (30) and (31) do not change if the poles 𝜆1, … , 𝜆𝑛 and 𝜇1, … , 𝜇𝑛 are

reordered. There is another way to construct 𝑛-pole solutions. Suppose we define some ordering
of poles and seek the wave function as a product of one-pole solutions (see Ref. 15):

𝜒 =

𝑛∏
𝑘=1

(
𝐼 +

𝜆𝑘 − 𝜇𝑘
𝜆 − 𝜆𝑘

𝑃𝑘

)
, 𝜒−1 =

𝑛∏
𝑘=1

(
𝐼 −

𝜆𝑛−𝑘+1 − 𝜇𝑛−𝑘+1
𝜆 − 𝜇𝑛−𝑘+1

𝑃𝑛−𝑘+1

)
. (35)

Here, 𝑃𝑘 = 𝑃2𝑘 are certain projection operators. All of them can be found by implementing a
sequence of dressings, which is a simple generalization of the procedure used for constructing
of a general one-pole solution discussed above. Both methods for constructing of 𝑛-pole solutions
give identical results.
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7 of 14 ZAKHAROV

3 GENERALIZEDMANAKOV–ZAKHAROV SYSTEM

Let us suppose that in (1) we have 𝑍1 = �̄�4 = 𝑢 and 𝑍3 = �̄�2 = 𝑣. Then, we obtain the system

𝜕

𝜕𝑢

(
𝜕𝑌

𝜕�̄�
𝑌−1

)
−
𝜕

𝜕𝑣

(
𝜕𝑌

𝜕𝑣
𝑌−1

)
= 0. (36)

In the particular case when �̄� = 𝑢 = 𝜏, this is the Manakov–Zakharov (MZ) hyperbolic system

𝜕

𝜕𝜏

(
𝜕𝑌

𝜕𝜏
𝑌−1

)
=

𝜕

𝜕𝑣

(
𝜕𝑌

𝜕𝑣
𝑌−1

)
. (37)

We will study the general system (36), having in mind that the transition to the special case (37)
can easily be performed. The Lax pair now looks as follows:

(
𝜆
𝜕

𝜕𝑢
+
𝜕

𝜕𝑣

)
Ψ + 𝐴Ψ = 0,

(
𝜆
𝜕

𝜕𝑣
+

𝜕

𝜕�̄�

)
Ψ + 𝐵Ψ = 0. (38)

At this point, 𝑌 is a matrix function free of any limitations. A one-pole solution is given by the
construction described in Section 2. The dressing function 𝑇 (corresponding to 𝐴 = 𝐵 = 0) is still
a function of two variables:

𝑇 = 𝑇

(
𝑣 −

1

𝜆
𝑢, �̄� −

1

𝜆
𝑣

)
. (39)

This system is too general to be particularly interesting. We now draw attention to one fact. If 𝑌
is a solution of (36), then ±𝑌† also are solutions of this system. Therefore, one can assume that

𝑌† = 𝑌. (40)

Imposing the reduction (40) makes it possible to impose a strict involution on the wave function
Ψ(𝜆).
Let us consider the function Ψ̂(𝜆) defined by a condition

Ψ̂(𝜆) = Ψ†
(
1

𝜆

)
. (41)

Here, Ψ†(𝜆) = Ψ†(�̄�). We claim that Ψ̂ satisfies the following condition:

Ψ̂(𝜆) = Ψ−1(𝜆)𝑌, 𝑌 = Ψ(0). (42)

To prove this, we plug (41) into the system (38) and find that Ψ̂ satisfies the equations

(
𝜆
𝜕

𝜕𝑣
+

𝜕

𝜕�̄�

)
Ψ̂ + 𝜆Ψ̂𝐴† = 0,

(
𝜆
𝜕

𝜕𝑢
+
𝜕

𝜕𝑣

)
Ψ̂ + 𝜆𝐵+Ψ̂† = 0. (43)
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ZAKHAROV 8 of 14

At the same time, the inverse matrix satisfies the system of equations

(
𝜆
𝜕

𝜕𝑣
+

𝜕

𝜕�̄�

)
Ψ−1 = Ψ−1𝐵,

(
𝜆
𝜕

𝜕𝑢
+
𝜕

𝜕𝑣

)
Ψ−1 = Ψ−1𝐴. (44)

Then, we substitute (42) into (43). Derivatives of Ψ−1(𝜆) can be expressed using (44). After
canceling by Ψ−1(𝜆), we end up with the following relation:

𝐵𝑌 +

(
𝜆
𝜕

𝜕𝑣
+

𝜕

𝜕�̄�

)
𝑌 + 𝜆𝑌𝐴† = 0,

𝐴𝑌 +

(
𝜆
𝜕

𝜕𝑢
+
𝜕

𝜕𝑣

)
𝑌 + 𝜆𝑌𝐵† = 0. (45)

Separating the constant and the linear in 𝜆 terms, we obtain

𝜕𝑌

𝜕�̄�
+ 𝐵𝑌 = 0,

𝜕𝑌

𝜕𝑣
+ 𝐴𝑌 = 0,

or

𝐵 = −
𝜕𝑌

𝜕�̄�
𝑌−1, 𝐴 = −

𝜕𝑌

𝜕𝑣
𝑌−1, (46)

and

𝜕𝑌

𝜕𝑣
+ 𝑌𝐴† = 0,

𝜕𝑌

𝜕𝑢
+ 𝑌𝐵† = 0. (47)

ConjugatingEquation (47) andusing relation (40), we return to Equations (46), which are satisfied
by virtue of (38).
The involution (42) implies a strong restriction on the positions of the poles of the direct and

inverse wave functions Ψ and Ψ−1. Suppose that both Ψ and Ψ−1 are rational functions given by
expressions similar to (30) and (31):

Ψ(𝜆) = 𝐼 +

𝑛∑
𝑘=1

𝑅𝑘
𝜆 − 𝜆𝑘

, Ψ−1(𝜆) = 𝐼 −

𝑛∑
𝑘=1

𝑆𝑘
𝜆 − 𝜇𝑘

. (48)

We calculate Ψ̂(𝜆):

Ψ̂(𝜆) = 𝐼 +

𝑛∑
𝑘=1

𝑅
†
𝑘

1

𝜆
− �̄�𝑘

. (49)

This function can be expanded into partial fractions. After a simple calculation, we end up with
the following result:

Ψ̂(𝜆) = 𝑌+ −

𝑛∑
𝑘=1

𝑅
†
𝑘

𝜆 −
1

�̄�0

1

�̄�2
0

, 𝑌+ = 𝐼 −

𝑛∑
𝑘=1

𝑅
†
𝑘

�̄�𝑘
= 𝑌. (50)
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9 of 14 ZAKHAROV

Using relation (42), we find that

𝜇𝑘 =
1

�̄�𝑘
, 𝑆𝑘 = 𝑅

†
𝑘

1

�̄�2
𝑘

𝑌−1. (51)

We consider the simplest case 𝑛 = 1, when we have only one pair of poles 𝜆1 and 𝜇1 =
1

�̄�1
.

Expression (48) becomes

Ψ = 𝐼 +
𝜆1 −

1

�̄�1

𝜆 − 𝜆1
𝑃, Ψ−1 = 𝐼 −

𝜆1 −
1

�̄�1

𝜆 −
1

�̄�1

𝑃. (52)

Substituting (52) into (51) leads to the relation

𝑃† = 𝑃, (53)

which means that

𝑃 =
|�̄�⟩ ⟨𝑞|⟨𝑞|�̄�⟩ , ⟨𝑞| = ⟨𝑞0|𝐺, 𝐺 = 𝑇−1

(
𝑣 + �̄�1𝑢 + �̄� +

1

�̄�1
𝑣

)
. (54)

Here, 𝑇 is an arbitrary function of one complex variable.
If reduction (42) is satisfied, then all projectors in (35) are Hermitian:

𝑃
†
𝑖
= 𝑃𝑖 and 𝜇𝑘 =

1

𝜆𝑘
. (55)

4 GENERALIZEDWARD SYSTEM

We now suppose that all 𝑍𝑖 are real, and relabel them 𝑥𝑖 . Equation (1) now reads

𝜕

𝜕𝑥1

(
𝜕

𝜕𝑥4
𝑌 ⋅ 𝑌−1

)
−

𝜕

𝜕𝑥3

(
𝜕

𝜕𝑥2
𝑌 ⋅ 𝑌−1

)
= 0. (56)

A particular case of this system, when

𝑥1 = 𝑥4 = 𝑥, 𝑥2 =
1

2
(𝑡 + 𝑦), 𝑥3 =

1

2
(𝑡 − 𝑦),

was studied by R. S. Ward8 and then by Ioannidou.9 Hence, we call (56) the generalized Ward
system.We notice that𝑌 in (56) can be a real or a complex valuedmatrix function.Wewill discuss
the general case when 𝑌 is complex-valued. The reduction to the real case can be done easily.
The Lax pair (2) now looks as follows:

(
𝜆
𝜕

𝜕𝑥1
+

𝜕

𝜕𝑥2

)
Ψ + 𝐴Ψ = 0,
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ZAKHAROV 10 of 14

(
𝜆
𝜕

𝜕𝑥3
+

𝜕

𝜕𝑥4

)
Ψ + 𝐵Ψ = 0. (57)

Suppose that 𝐴 and 𝐵 are anti-Hermitian:

𝐴† = −𝐴, 𝐵† = −𝐵. (58)

System (57) now takes the form

(
𝜆
𝜕

𝜕𝑥1
+

𝜕

𝜕𝑥2

)
Ψ̂ − 𝐴Ψ̂ = 0,

(
𝜆
𝜕

𝜕𝑥3
+

𝜕

𝜕𝑥4

)
Ψ̂ − 𝐵Ψ̂ = 0. (59)

The inverse wave functionΨ−1 satisfies exactly the same equation. This does not mean that Ψ̂ and
Ψ−1 coincide. Instead, there is a relation

Ψ†(�̄�) = Ψ−1(𝜆)𝑅(𝜆), (60)

where 𝑅(𝜆) satisfies equations

(
𝜆
𝜕

𝜕𝑥1
+

𝜕

𝜕𝑥2

)
𝑅 − [𝐴, 𝑅] = 0,

(
𝜆
𝜕

𝜕𝑥3
+

𝜕

𝜕𝑥4

)
𝑅 − [𝐵, 𝑅] = 0. (61)

To solve system (56), one considers the reduction

𝑌† = 𝑌−1𝑅, 𝑅 = 𝑅(0). (62)

If 𝑅 = 1, then 𝑌 is a unitary matrix. We warn the reader that this function does not necessarily
belong to the group SU𝑁 because ℎ = det𝑌 is not a unit in general. It satisfies the condition |ℎ|2 =
1. It should bementioned that most of exact solutions described in the articles8,9 do not satisfy the
condition ℎ = 1, hence do not belong to SU𝑁 .
We see that the class of involutions (60) is very broad. However, we henceforth put 𝑅 = 1, such

that 𝑌 is a unitary matrix, but do not impose the condition ℎ = 1. In other words, we assume that

Ψ†(�̄�) = Ψ−1(𝜆). (63)

Assume that Ψ and Ψ−1 are given by partial fraction expansions (48). Substituting these relations
into (63) gives 𝜇𝑘 = �̄�𝑘 and 𝑆𝑘 = 𝑅

†
𝑘
. Again, let us consider the one-pole solution

Ψ0 = 𝐼 +
𝜆0 − �̄�0
𝜆 − 𝜆0

𝑃, Ψ−1 = 𝐼 −
𝜆0 − �̄�0

𝜆 − �̄�0
𝑃. (64)
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11 of 14 ZAKHAROV

The involution (63) means that 𝑃† = 𝑃, and hence 𝑃 is a Hermitian projector. In the same way, in
the product of one-pole solutions

Ψ =
∏(

𝐼 −
𝜆𝑘 − �̄�𝑘

𝜆 − �̄�𝑘
𝑃𝑘

)
(65)

all the partial projectors are Hermitian: 𝑃†
𝑘
= 𝑃𝑘.

Note that for the one-pole solution (64),

𝑌 = 𝐼 −
𝜆0 − �̄�0
𝜆0

𝑃, det 𝑌 =
�̄�0
𝜆0

≠ 1.

Hence, this solution does not belong to SU𝑁 . To construct the solution belonging to SU𝑁 , one
should consider two-pole solutions 𝜆1 = 𝜆0, 𝜆2 = �̄�0. In this case, the poles of the direct and inverse
wave functions coincide. A detailed study of this system is an interesting problem, but is beyond
the scope of this article.

5 (𝟑 + 𝟏) INTEGRABLE SYSTEMS

Let us consider Equation (1) after the following simplifications:

𝑍1 = 𝜉 =
1

2
(𝑡 + 𝑧), 𝑍2 = 𝑢, 𝑍3 = 𝜂 =

1

2
(𝑡 − 𝑧), 𝑍4 = �̄�, (66)

𝜕

𝜕𝜉

(
𝜕

𝜕�̄�
𝑌 ⋅ 𝑌−1

)
−
𝜕

𝜕𝜂

(
𝜕

𝜕𝑢
𝑌 ⋅ 𝑌−1

)
= 0. (67)

We now introduce the Lax pair (
𝜆
𝜕

𝜕𝜉
+

𝜕

𝜕𝑢

)
Ψ + 𝐴Ψ = 0,

(
𝜆
𝜕

𝜕𝜂
+

𝜕

𝜕�̄�

)
Ψ + 𝐵Ψ = 0. (68)

Here, 𝑌 = Ψ(0) and

𝐴 = −
𝜕𝑌

𝜕𝑢
Ψ−1, 𝐵 = −

𝜕𝑌

𝜕�̄�
Ψ−1. (69)

The general solution of system (68) is

Ψ = Ψ(𝜉 − 𝜆𝑢, 𝜂 − 𝜆�̄�). (70)

Here, Ψ is an arbitrary matrix-valued function of two complex variables.
We consider one important class of special solutions, when Ψ is a function of one complex

variable

Ψ = Ψ(𝜉 + 𝑐𝜂 − 𝜆(𝑢 + 𝑐�̄�)), (71)
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ZAKHAROV 12 of 14

where 𝑐 is a real constant. Now

𝜉 + 𝑐𝜂 =
1

2
[(1 + 𝑐)𝑡 + (1 − 𝑐)𝑧]. (72)

If 𝑐 = −1, this is a stationary solution. If 𝑐 = 1, this solution is homogeneous along the 𝑧-axis. In
the general case 𝑐 ≠ ±1, solution (71) describes waves propagating along the 𝑧-axis. Now

𝜉 + 𝑐𝜂 =
1

2
(1 − 𝑐)(𝑧 + 𝑣𝑡), 𝑣 =

1 + 𝑐

1 − 𝑐
. (73)

We consider only the case when Ψ is a diagonal matrix. Now

𝐹 =
‖‖‖‖‖
𝐹1 0

0 𝐹2

‖‖‖‖‖ , 𝐺 =

‖‖‖‖‖‖
1

�̃�1
0

0
1

�̃�2

‖‖‖‖‖‖ , (74)

𝐹1 = 𝐹1(𝜉 + 𝑐𝜂 + 𝜆0(𝑢 + 𝑐�̄�)), 𝐹2 = 𝐹2(𝜉 + 𝑐𝜂 + 𝜆0(𝑢 + 𝑐�̄�)),

�̃�1 = 𝐹1(𝜉 + 𝑐𝜂 + 𝜇0(𝑢 + 𝑐�̄�)), �̃�2 = 𝐹2(𝜉 + 𝑐𝜂 + 𝜇0(𝑢 + 𝑐�̄�)). (75)

We define the initial vector and the initial covector

|𝑝0⟩ = |||||
𝑝1
𝑝2

||||| , ⟨𝑞0| = (𝑞1, 𝑞2). (76)

After simple intermediate calculations, we obtain the following components of the solution 𝑌:

𝑌11 = 1 −
𝜆0 − 𝜇0
𝜆0

𝑝1𝑞1
Δ

𝐹1�̃�2, 𝑌12 = −
𝜆0 − 𝜇0
𝜆0

𝑝1𝑞2
Δ

𝐹1�̃�1,

𝑌21 = −
𝜆0 − 𝜇0
𝜆0

𝑝2𝑞1
Δ

𝐹2�̃�2, 𝑌22 = 1 −
𝜆0 − 𝜇0
𝜆0

𝑝2𝑞2
Δ

𝑝2𝑞2𝐹2�̃�1,

Δ = 𝑝1𝑞1𝐹1�̃�2 + 𝑝2𝑞2𝐹2�̃�1. (77)

6 ONE-SOLITON SOLUTION

Let us put

𝐹1 = 𝑒
𝑎(𝜉+𝑐𝜂+𝜆0(𝑢+𝑐�̄�)), 𝐹2 = 𝑒

−𝑎(𝜉+𝑐𝜂+𝜆0(𝑢+𝑐�̄�)), (78)

�̃�1 = 𝑒
𝑎(𝜉+𝑐𝜂+𝜇0(𝑢+𝑐�̄�)), �̃�2 = 𝑒

−𝑎(𝜉+𝑐𝜂+𝜇0(𝑢+𝑐�̄�)).

Now suppose that 𝑎, 𝜆0, 𝜇0 are purely imaginary:

𝑎 = 𝑖𝑠, 𝜆0 = 𝑖𝐴, 𝜇0 = −𝑖𝐴. (79)

Then,

𝐹1 = 𝑒
𝑖𝑠(𝜉+𝑐𝜂)−𝐴𝑠(𝑢+𝑐�̄�), 𝐹2 = 𝑒

−𝑖𝑠(𝜉+𝑐𝜂)−𝐴𝑠(𝑢+𝑐�̄�), (80)

�̃�1 = 𝑒
𝑖𝑠(𝜉+𝑐𝜂)+𝐴𝑠(𝑢+𝑐�̄�), �̃�2 = 𝑒

−𝑖𝑠(𝜉+𝑐𝜂)−𝐴𝑠(𝑢+𝑐�̄�),
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13 of 14 ZAKHAROV

and

𝐹1�̃�1 = 𝑒
2𝑖𝑠(𝜉+𝑐𝜂), 𝐹1�̃�2 = 𝑒

−2𝐴𝑠(𝑢+𝑐�̄�), (81)

�̃�1𝐹2 = 𝑒
2𝐴𝑠(𝑢+𝑐�̄�), 𝐹2�̃�2 = 𝑒

−2𝑖𝑠(𝜉+𝑐𝜂),

𝜆0 − 𝜇0
𝜆0

= 2.

If we put 𝑞1 = �̄�1, 𝑞2 = −�̄�2, then

Δ = |𝑝1|2𝑒−2𝐴𝑠(𝑢+𝑐�̄�) − |𝑝2|2𝑒2𝐴𝑠(𝑢+𝑐�̄�). (82)

Thus, the elements of the solution 𝑌 are

𝑌11 = 1 −
|𝑝1|2
2Δ

𝑒2𝐴𝑠(𝑢+𝑐�̄�), 𝑌12 = 𝑌21 = −
𝑝1�̄�2
2Δ

𝑒2𝑖𝑠, 𝑌22 = 1 −
|𝑝2|2
2Δ

𝑒−2𝐴𝑠(𝑢+𝑐�̄�). (83)

Let 𝐴 > 0. Note that |𝑢 + 𝑐�̄�|→∞ as |𝑢|→∞ at any direction on the (𝑢, �̄�) plane. Then,

𝑌11 → 1, 𝑌11 →
1

2
, 𝑌12 → 0, 𝑌12 → 0, as |𝑢|→∞. (84)

Thus, this solution can be interpreted as a one-soliton solution. This solution is essentially two-
dimensional and moves along the 𝑍-axis with a constant velocity that can be an arbitrary real
number (including the limiting case 𝑣 = ±∞). On the (𝑢, �̄�)-plane, the off-diagonal elements𝑌12,
𝑌21 decay exponentially, while the diagonal elements become constant as |𝑢|→∞. The absolute
values of the elements |𝑌𝑖𝑗| do not depend on 𝑡 and 𝑍.
This example shows that in the (3 + 1) case, system (1) has an extremely rich class of solitonic

solutions. Their detailed description is beyond the scope of this paper.
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